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Chapter 2

Spatial descriptions

2.2 DESCRIPTIONS : POSITIONS,ORIENTATIONS,AND FRAMES

2.3 MAPPINGS :
CHANGING DESCRIPTION FROM FRAME TO FRAME

2.4 OPERATORS :
TRANSLATIONS ,ROTATIONS, AND TRANSFORMATIONS




Introduction:

We are constantly concerned with the location of objects in three-dimensional space.
These objects are the links of the manipulator, the parts and tools with which it deals,
and other objects in the manipulator’s environment.
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FIGURE 1.5: Coordinate systems or “frames” are attached to the
manipulator and to objects in the environment.



Introduction: cont.

In order to describe the position and orientation of a body in space, we will always
attach a coordinate system, or frame, rigidly to the object. We then proceed to
describe the position and orientation of this frame with respect to some reference
coordinate system. (See Fig. 1.5.)
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FIGURE 1.5: Coordinate systems or “frames” are attached to the
manipulator and to objects in the environment.




Description of a position

Once a coordinate system is established, we can locate any point in the
universe with a 3 x 1 position vector. Because we will often define many
coordinate systems, the vector will have the name of the coordinate
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FIGURE 2.1: Vector relative to frame (example).



Description of an orientation
Often, we will find it necessary not only to represent a point in space but also to
describe the orientation of a body in space .

(B) (4}

AR = [AXB Ay, AZB] = |21 722 23
31 132 133

Rotation matrix : {B} relative to { A}

P>

A

i Rotation matrix : {B} with respect to (w.r.t) A}



We can give expressions for the scalars 'ijin (2.2) by nothing that the components
of any vector are simply the projections of that vector on to the unit directions of
its reference frame. Hence , each component of éR in (2.2) can be written as the
dot product of a pair of unit vectors :

 [ReBy T Ra 25K
nglAXB AYB AZB]= XB'?A YB'?A ZAB.?A (23)
Xg. 2, Yp.24 Zp.Z,

Note: dot product for vector




Find 2R given 4R ?

BXT
A :

BZT
ZA

Hence, ﬁR, the description of frame {A} relative to {B}, is given by the transpose of éR;

that is,
Bp _ ApT
2R = R".

This suggests that the inverse of a rotation matrix is equal to its transpose:

AX;;
ApT Ap _ | AyT A A 7
BR BR - YB [ Xp “¥p “Zp ] = I3,



EXAMPLE 2.1

Figure 2.6 shows a frame {B} that is rotated relative to frame {A} about Z by 6 =30
degrees. Here , Z is pointing out of the page . Find the rotation matrix {B} w.r.t {A}

(A} _
(B} A cosf —sinf 0
Ys |9, 4R =R;(0) = [sin6 cosf O
0 0 1

4R =10.500 0.866 0.000

0.000 0.000 1.000

)

0.866 —0.500 0.000
Xp

> Xa BR =4RT =|-0.500 0.866 0.000

0.000 0.000 1.000

0.866 0.500 0.000]

FIGURE 2.6: {B} rotated 30 degrees about 2.



APPENDIX A

Formulas for rotation about the principle axes by :

Ry (0) =

Ry(0) =

R,(0) =

1 0 0
0 cosf —siné
_O sinf cos#

" cosf 0O sinf |
0 1 0
—sinf 0 cosf |

" cosd —sind 0 |
sinf@ cos@ O
0 0 1




Mappings involving general frames
Very often, we know the description of a vector with respect to some frame {B},and
we would like to know its description with respect to another frame,{A}.

We now consider the general case of mapping. Here, the origin of frame {B} is not
coincident with that of frame {A} but has a general vector offset. The vector that

locates {B}'s origin is called “Pgorc . Also {B} is rotated with respect to {A}, as
described by 4R .
Given 5P, we wish to compute Ap  asin Fig. 2.7.

(4]

X4

FIGURE 2.7 : General transform of a vector .



AP — ATBP

4P = 4R PP + “Pgore

Homogeneous transform

(71-1t
1 000

APBORG] [BP]
1 1
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EXAMPLE 2.2
Figure shows a frame {B}, which is rotated relative to frame {A} aboutZ
by 30 degree, and translated 10 units in X, , and translated 5 units in ¥} .

Find 4P, where 2P =[3.0 7.0 0.0]”.

0.500 0.866 0.000
0.000 0.000 1.000

cosf —sinf 0 0.866 —0.500 0.000
4R = R;(0) = |sinf cosf® 0 |=
0 0 1




EXAMPLE 2.5
Figure 2.13 shows a frame {B} that is rotated relative to frame {A} about Z by 30

degrees and translated four units in X, and three units in ¥, . Thus, we have a
description of 4T.Find £T?

0.866 —0.5 0 [ 4]

a _ 0.5 0.866 0 |3

sl = 0 0 1 \o (2.68)
0 0 0 1.

Using (2.42) and (2.44), we can write the form of 27 as

ApT | _ApTA
By _ |: 5K '"BR PBORG:I
A —_ .

0 0 0 1
(B} , .
Note that, with our notation,
?s AT=5T"
A
{4} ] _
b 0.866 0.500 0 —4.964
v, Br_  —lap _|[—05 0866 0 —0.598
A B 0 0 1 0
L 0 0 0 1 |

> }?A
FIGURE 2.13 : {B} relative to {A}.



2.6 Compound transformations

we have ¢P and wish to find 4P.

FIGURE 2.12 : Compound frames: Each is known relative to previous one..
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2.7 TRANSFORM EQUATIONS

(D}

(A}

a pT = aTpT,or = gTETT.
i
A (8) 0T = 0T aT2T = YTATST 1
or

T = UT8T.

N
O

FIGURE 2.14: Set of transforms forming a loop .



2.7 TRANSFORM EQUATIONS

(T}

IT = TTB8r3T = BT-18T T,

{G]
I
(B} —

T

ol

FIGURE 2.16 : Manipulator reaching for a bolt .
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2.8 MORE ON REPRESENTATION OF ORIANTATION

Rotation matrix determinant is +1

%] =1,

11 T12 113 I;’ B 1
R=|[XYZ]=|r21722723 2720,
31 132 733 %.72=0,
Y.Z=o.

* C(Clearly, the nine elements of a rotation matrix are not all

independent .
* In fact, given a rotation matrix, R, it is easy to write down the

six dependencies between the elements.
 Therefore, rotation matrix can be specified by just three
parameters.



2.8 MORE ON REPRESENTATION OF ORIANTATION

J Rotation matrices are useful as operators
(computer). Their matrix form is such that, when
multiplied by a vector , they perform the rotation
operation.

J Human operator at a computer terminal who
wishes to type in the specification of the desired
orientation of a robot’s hand would have a hard
time inputting a nine-element matrix with
orthonormal columns. A representation that
requires only three numbers would be simpler .



/-Y-X Euler angles (current angles)

Another possible description of a frame {B} is as follows:
Start with the frame coincident with a known frame {A}. Rotate {B} first about Zp
by an angle a ,then about Y by an angle B, and, finally , about X5 by an angle y.

In this representation, each rotation is performed about an axis of the moving system
{B} rather than one of the fixed reference {A}. Such sets of three rotations

24‘1 A

"

B

WD«

P

A
ot




—
8Rzyx(a, B,y ) = Rz(a), Ry(B)Rx(¥)

=|sa ca 0 ||O 1 0|0 cy —sy
0 0 11|—=sB 0 cB||0 sy cy

(cacB casfsy — sacy casficy + sasy
= |sacf sasfisy — cacy sasfcy + casy
|—sB  cBsy cfcy

ca —sa OHC,B 0 S,[?Hl 0 O ] Z-Y-X Euler angles

" cacB casBsy — sacy caspecy +sasy |
sacB sasBsy + cacy sasBecy —casy
- —sp cBsy cBey

I




Robotics

given cacB casfsy —sacy caspcy + sasy
8Rzy5(@, B,y ) = Rz(a), Ry(B)Rx(y) = | sacB sasBsy +cacy saspcy — casy
—sf chsy cBecy

11 12 "13
=1 ¥21 T3 793
| 31 T3p T3z _

Find

B = Atan2(—ry, \Jr2 +r2),
x = AtaDZ(i'21/Cﬁ, }"11/6'}9),
Yy = AtanZ(r32/ cB, r33/ch),
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EXAMPLE




EXAMPLE 2.7

Consider two rotations , one about Zby 30 degrees and one about X by 30 degrees:

0.866 —0.500 0.000
(2.60)

R,(30) = [0.500 0.866 0.000
0.000 0.000 1.000

1.000 0.000 0.000
(2.61)

Ry (30) = [o.ooo 0.866 —0.500
0.000 0.500 0.866

0.87 —0.43 0.25
R;(30)Rx(30) = [0.50 0.75 —0.43
0.00 0.50 0.87

0.87 —0.50 0.00
# Rx(30)R;(30) =]0.43 0.75 —0.50 (2.62)
0.25 0.43 0.87



/-Y-Z Euler angles

Another possible description of a frame {B} is :

Start with the frame coincident with a known frame {A}.rotate
{B} first about Z5 by an angle «, then about Y5 by an angle 3,
and , finally , about Z by an angle y .

[cacfcy — sasy — cacfsy — sacy casfs
AR,z (a, B,y) = |sacBcy + casy — sacBsy + cacy sasp|.
— sfcy spsy cf

A —
gRzvz(a, B,y) = |T21 122 123
[731 732 33

(711 712 7’13]

f =Atan2 ( /r321 + 15, 733),

a = Atan 2 (ry3,/sB,113/SP),
y = Atan 2 (r33,/sB, —131/sp).



Robotics

Given: ]

cacfPcy — sasy — cacfsy — sacy casf
2Ry (a, B, y) = |[sacBcy + casy — sacBsy + cacy sasB]|.
— sfcy spsy )

[711 712 713
A _
SRyyz(a, B,y) = 121 T22 T23].
, 731 132 133
Finda, B,y

— 2 2
B =Atan2 (|rs; +135,733),

a = Atan 2 (1y3,/s6,113/SB),
Yy = Atan 2 (133,/sB, —131/sPB).

B = Atan2(—ry, \Jr2 +12),

= AtaDZ(i'21/Cﬁ, }"11/6'}9),
y = Atan2(rsy,/cB, ra3/cB),
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APPENDIX B
The 12 angle-set conventions

The 12 Euler angle sets



2.27 [15] Referring to Fig. 2.25,give the value of 5T
2.28 [15] Referring to Fig. 2.25,give the value of 4t
2.29 [15] Referring to Fig. 2.25,give the value of 2T

(AW

|
|
|
I I
| I
R

FIGURE 2.25: Frames at the corners of a wedge.



2.27 Fig. 2.25, give
the value of 4T

Zp
AN "S5 . Re(180) Rx(0) Ry(0) =Rz(180)

! I
| | ,
{ i ?B o kC e L \i
| | RUYE G Euler: Rzxy(180,0,0)
< 3 > Ao | \ o .1 Fixed:Ryxz{0,0,158]
.6 -2 R} i e ﬁ%i{‘;\ﬁa\, = o
i b ) i 3
- 2
Rie) 4~




2.28 Fig. 2.25,give the value of éT;Q_flj,_\“\:\A e

30° Pe Ze
e )
Y AC 2
0 211 | 25
?A fE |
RN
: o
| |
* 3 !
Ryzx (fixed)=Rx(0) Rz(30) Ry(90)
Rxzy (Euler)=Rx(0) Rz(30) Ry(90)
Other solutions?? Al e

Euler: Ry(90) Rx(-30)



=)\
= e
T S

Other solutions??
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